

Handling Privacy Risks of LLMs Combating Security and Privacy Issues in the Era of LLMs (Part 3)

Huan Sun

Department of Computer Science and Engineering

Translational Data Analytics Institute

The Ohio State University

June 2024

NAACL Tutorials

Combating Security and Privacy Issues in the Era of LLMs

- 1. Selected references between 2022 and 2024
- 1. Focus on generative models

This part is not meant to be exhaustive, but to provide a high-level overview and structure on LLMs' privacy risks and mitigation strategies

What is Privacy?

From the Stanford AI Index Report 2024:

A comprehensive definition of privacy is difficult and context-dependent. For the purposes of this report, the Al Index defines privacy as an individual's right to the confidentiality, anonymity, and protection of their personal data, along with their right to consent to and be informed about if and how their data is used. Privacy further includes an organization's responsibility to ensure these rights if they collect, store, or use personal data (directly or indirectly). In Al, this involves ensuring that personal data is handled in a way that respects individual privacy rights, for example, by implementing measures to protect sensitive information from exposure, and ensuring that data collection and processing are transparent and compliant with privacy laws like <u>GDPR</u>.

Focus: LLMs + Privacy

- a. Membership inference attack (MIA)
- b. Training data extraction
- 2. Privacy-preserving methods
 - a. Data sanitization
 - b. Training-time privacy-preserving
 - c. Inference-time privacy-preserving
- 3. Final discussions

Privacy risks

Privacy Risks

- 1. Membership inference attack (MIA)
- 1. Training data extraction

Membership Inference Attack: Definition

A typical deep learning process

Hu et al., "Membership Inference Attacks on Machine Learning: A Survey." ACM Computing Surveys, 2022.

Membership Inference Attack: Definition

White-box:

Black-box:

$$x \longrightarrow \begin{array}{c|c} & & & \\ \hline \theta_1 \rightarrow h(x;\theta_1) \rightarrow \theta_2 \rightarrow h(x;\theta_2) \rightarrow \cdots \rightarrow \theta_i \\ \hline f(x;\theta^*) \end{array} \xrightarrow{} \hat{p}(y|x) \xrightarrow{} \hat{p}(y|x) \xrightarrow{} \text{attacker}$$

Hu et al., "Membership Inference Attacks on Machine Learning: A Survey." ACM Computing Surveys, 2022.

Membership Inference Attack: Milestones

1. The concept of MIA was firstly proposed by Homer et al., Resolving individuals contributing trace amounts of DNA to highly complex mixtures using high-density SNP genotyping microarrays. PLOS Genetics 4 (2008), 1–9.

Published statistics about a genomics dataset can infer the presence of a particular genome in this dataset.

 The first MIAs on classification models in ML: Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. 2017. Membership inference attacks against machine learning models. In 2017 IEEE Symposium on Security and Privacy (S&P). IEEE, 3–18.

An attacker can identify whether a data record was used to train a neural network based classifier or not, solely based on the prediction vector of the data record.

MIAs on LLMs via Neighborhood Comparison

Mattern et al., "Membership Inference Attacks against Language Models via Neighbourhood Comparison." Findings of ACL 2023.

- Directly extract <u>verbatim</u> training examples using only query access to the target model
- 1. Relationship with membership inference attack (MIA):
 - a. More recent attack formulated by Carlini et al., 2021
 - b. Training data extraction is more severe (as MIA assumes the target data point is given)
 - c. MIA can be used to facilitate training data extraction

Among 1,800 candidate memorized samples, over 600 of them are verbatim samples from the GPT-2 training data.

Carlini et al. "Extracting Training Data from Large Language Models." USENIX Security Symposium 2021.

Category	Count
US and international news	109
Log files and error reports	79
License, terms of use, copyright notices	54
Lists of named items (games, countries, etc.)	54
Forum or Wiki entry	53
Valid URLs	50
Named individuals (non-news samples only)	46
Promotional content (products, subscriptions, etc.)	45
High entropy (UUIDs, base64 data)	35
Contact info (address, email, phone, twitter, etc.)	32
Code	31
Configuration files	30
Religious texts	25
Pseudonyms	15
Donald Trump tweets and quotes	12
Web forms (menu items, instructions, etc.)	11
Tech news	11
Lists of numbers (dates, sequences, etc.)	10

Categorization of the memorized training examples.

Bold: Personally identifiable information

Carlini et al. "Extracting Training Data from Large Language Models." USENIX Security Symposium 2021.

Scalable Extraction from (Production) LLMs

Nasr et al., "Scalable Extraction of Training Data from (Production) Language Models." arXiv 2023.

With a budget of \$200 USD, over 10,000 unique verbatim examples were extracted.

Nasr et al., "Scalable Extraction of Training Data from (Production) Language Models." arXiv 2023.

Divergence Attack against ChatGPT

Nasr et al., "Scalable Extraction of Training Data from (Production) Language Models." arXiv 2023. Stanford AI Index Report 2024.

Interesting Discussions & Future Work Of O

Nasr et al., "Scalable Extraction of Training Data from (Production) Language Models." arXiv 2023.

Privacy-preserving Methods

Privacy-preserving methods

- 1. Data preprocessing time (data sanitization)
- 1. Training time
- 1. Inference time

Removing the identifying information from data records is... ...**not sufficient** for protecting privacy!

MAN 60 THROWN FROM MOTORCYCLE A 60-year-old Soap Lake man was hospitalized Saturday afternoon after he was thrown from his motorcycle. Ronald Jameson was riding his 2003 Harley-Davidson north on Highway 25, when he failed to negotiate a curve to the left. His motorcycle became airborne before landing in a wooded area. Jameson was thrown from the bike; he was wearing a helmet during the 12:24 p.m. incident. He was taken to Sacred Heart Hospital. The police cited speed as the cause of the crash. [News Review 10/18/2011]

An adversary used auxiliary information about some subscriber's movie preferences

Patients can be identified in anonymized health records released by Washington State using newspaper stories

Narayanan, Arvind, and Vitaly Shmatikov. "How to break anonymity of the netflix prize dataset." 2006. Sweeney, Latanya. "Only you, your doctor, and many others may know." 2015.

Slide Credit: Xiang Yue

Perfect redaction does not even exist in reality!

• NER model

• PII detector

Any individual's data record included or not should not have significant impact on the result

Any individual's data record included or not should not have significant impact on the result Consider two databases, D and D', that differ by only one record.

Formally, a mechanism M is ϵ -differentially private if, for any two adjacent datasets D and D', and for any possible output O, the following holds:

 $\Pr[\operatorname{M}(D) \in O] \leq \exp(\epsilon) imes \Pr[\operatorname{M}(D') \in O]$

Reference: <u>https://ealizadeh.com/blog/abc-of-differential-privacy/</u>

Any individual's data record included or not should not have significant impact on the result Consider two databases, D and D', that differ by only one record.

Formally, a mechanism M is ϵ -differentially private if, for any two adjacent datasets D and D', and for any possible output O, the following holds:

 $\dim \operatorname{div}[M(D) \,||\, M(D')] \leq \epsilon$

 $\Pr[\operatorname{M}(D) \in O] \leq \exp(\epsilon) imes \Pr[\operatorname{M}(D') \in O]$

Reference: <u>https://ealizadeh.com/blog/abc-of-differential-privacy/</u>

Consider two databases, D and D', that differ by only one record.

Dwork et al. "Calibrating noise to sensitivity in private data analysis." TCC 2006

Formally, a mechanism M is ϵ -differentially private if, for any two adjacent datasets D and D', and for any possible output O, the following holds:

 $\Pr[\operatorname{M}(D) \in O] \leq \exp(\epsilon) imes \Pr[\operatorname{M}(D') \in O]$

 ϵ : privacy parameter controlling the amount of noise added to the data and shows how much the output probability distribution can change. The smaller ϵ , a stronger privacy guarantee is provided.

Consider two databases, D and D', that differ by only one record.

Dwork et al. "Calibrating noise to sensitivity in private data analysis." TCC 2006

Formally, a mechanism M is ϵ -differentially private if, for any two adjacent datasets D and D', and for any possible output O, the following holds:

 $\Pr[\operatorname{M}(D) \in O] \leq \exp(\epsilon) imes \Pr[\operatorname{M}(D') \in O]$

 ϵ : privacy parameter controlling the amount of noise added to the data and shows how much the output probability distribution can change. The smaller ϵ , a stronger privacy guarantee is provided

(ϵ , δ)-DP: a widely adopted relaxation where δ is a small non-negative number measuring the chance of a data breach.

A randomized M is considered (ϵ, δ) -differentially private if the probability of a significant privacy breach (i.e., a breach that would not occur under ϵ -differential privacy) is no more than δ . More formally, a mechanism M is (ϵ, δ) -differentially private if

 $\Pr[\operatorname{M}(D) \in O] \leq \exp(\epsilon) imes \Pr[\operatorname{M}(D') \in O] + \delta$

If $\delta=0$, then (ϵ,δ) -DP is reduced to a ϵ -DP.

Privacy

Differentially Private Stochastic Gradient Descent (DPSGD)

Abadi et al. "Deep learning with differential privacy." CCS 2016 Figure from Rahman et al. "Membership Inference Attack against Differentially Private Deep Learning Model." Transaction on Data Privacy, 2018

- 1. Li et al., Large language models can be strong differentially private learners. ICLR 2022
- 1. Bu et al., Automatic Clipping: Differentially Private Deep Learning Made Easier and Stronger. NeurIPS 2023

Improved computational efficiency and privacy-utility trade-off

Limitations of DP to Text Data

- 1. Confidential information in a natural language dataset is sparse. DP's undiscriminating protection for all sentences is unnecessarily conservative and could hurt utility.
- 1. Same sensitive texts may appear in *many data points*

SYS: Hello, I am the customer support bot. What do you need?
USR: Hello robot. Where is my package?
SYS: May I have your full name?
USR: Yes, <mark>James Bing</mark> .
SYS: We will need the shipping address as well.
USR: Ok, it is <mark>81171 Nguyen Ford North</mark> Crystalbury, MO 52398.
SYS: Could you repeat your address?
USR: Ok, it is <mark>81171 Nguyen Ford North</mark> Crystalbury, MO 52398.
SYS: The tracking number is VD98ID6CXJ What else can I do?

Provably Confidential Language Modelling

Xuandong Zhao Lei Li Yu-Xiang Wang University of California, Santa Barbara {xuandongzhao,leili,yuxiangw}@cs.ucsb.edu NAACL 2022

Provably Confidential Language Modeling

- 1. New definition: Confidentiality
 - precisely quantifies the risk of leaking sensitive texts
 - only preventing memorizing sensitive texts
- 1. Confidentially Redacted Training (CRT)
 - trains LM models with deduplication and redaction operations to protect confidential texts
- 1. Theoretically prove that CPT provides strong confidentiality guarantees

CRT Step 1: Deduplication

Zhao et al. "Provably Confidential Language Modeling." NAACL 2022.

CRT Step 2: Redaction & Public/Private Set Split

USR:	Hello	robot.	Where	is	my	package?
------	-------	--------	-------	----	----	----------

- SYS: May I have your full name?
- SYS: We will need the shipping address as well.
- SYS: Could you repeat your address?

 D^{public}

Zhao et al. "Provably Confidential Language Modeling." NAACL 2022.

Better perplexity and confidential guarantee by CR

Zhao et al. "Provably Confidential Language Modeling." NAACL 2022.

Synthetic Text Generation with Differential Privacy: A Simple and Practical Recipe

Xiang Yue^{1,*}, Huseyin A. Inan², Xuechen Li³, Girish Kumar⁵, Julia McAnallen⁴, Hoda Shajari⁴, Huan Sun¹, David Levitan⁴, and Robert Sim²

¹The Ohio State University, ²Microsoft Research, ³Stanford University, ⁴Microsoft, ⁵UC Davis {yue.149, sun.397}@osu.edu

lxuechen@cs.stanford.edu gkum@ucdavis.edu

{Huseyin.Inan,Julia.McAnallen,hodashajari,David.Levitan,rsim}@microsoft.com

ACL 2023, Honorable Mention for Best Papers

Synthetic text generation with DP

- 1. Fine-tune a generative language model with Differential Privacy
- 2. Leverage the DP-trained LM for synthetic text generation
- 3. Use synthesized text data to train downstream models

Yue et al. "Synthetic text generation with differential privacy: A simple and practical recipe." ACL 2023. Honorable Mention for Best Papers

Why synthetic datasets?

- 1. DP-trained generative models can be used to draw synthetic data for learning an expanding set of task models without incurring any additional privacy loss (due to the post-processing property of DP).
- 1. Dataset analysis is made easy as synthetic text generated from DP-trained models can be shared more freely, and inspecting its samples poses less of a privacy concern compared to examining the original private data.
- 1. Synthetic data generated from DP-trained models can be retained for a longer time under certain existing policies (e.g., right to be forgotten).

Data Type	Data Generator	Train w/ DP	Rating	Category
Original	_	-	0.7334	0.7752
Synthetic	GPT2	No (ε=∞)	0.6892	0.7584
		Yes (ɛ=4)	0.6656	0.7478
	GPT2-Medium	No (ε=∞)	0.6878	0.7550
		Yes (ɛ=4)	0.6756	0.7486
	GPT2-Large	No (ε=∞)	0.7090	0.7576
		Yes (ε=4)	0.6936	0.7568

Models trained on *synthetic data generated with DP* achieve similar performance to models trained on the *non-DP counterparts* and *original dataset*

(;)	—
(—
	—

Review Rating Classification

(1) 🙆 (11)

Business

Category

Classification

Private information leakage: canary injection 💴

Туре	Canary Sequence
Name	My name is <u>Chelsey Ann</u> . I had a hard time finding a good restaurant like this.
Addres s	The food took 6 hours to arrive to <u>1940 W</u> <u>State St Boise</u> ! Like literally!
Number	Driver couldn't find my house, even tho I told him my number is <u>208-344-2163</u>
Email	My issue is not with the driver 99% of the time however I just discovered they often send me phishing email to my personal account <u>truss25@tuxreportsnews.com</u>
Plate	I get my vehicle registered and they give me a new plate <u>D76HTH</u>

Repetition	ϵ	Perplexity Rank	Leaked Canaries
1	${\infty \over 4}$	1017/10000 3926/10000	0% 0%
10	${\infty \atop 4}$	1/10000 3320/10000	0% 0%
100	${\infty \atop 4}$	1/10000 969/10000	80% 0%

Canary sequences more likely to appear in the synthetic data generated by LLMs trained without DP than with DP (e.g., 4/5 vs. 0/5)

Industrial apps: Microsoft customer feedback

Downstream Applications

Sentiment Classification

All the models need to be **re-trained** every 30 days according to GDPR

Information Extraction

Industrial apps: Microsoft customer feedback

- 1M customer feedback is collected on a set of Microsoft products
- Attributes can be ratings, product name, product type, location, etc.
- Synthetic data generated by GPT2-Large with DP ($\epsilon = 4$) achieve comparable performance to the one trained on the synthetic data generated without DP ($\epsilon = \infty$)

privacy-preserving at inference time:

- 1. Privacy-preserving in-context learning with differentially private few-shot generation, Tang et al., ICLR 2024
- 1. Privacy-preserving in-context learning for large language models, Wu et al., ICLR 2023
- 1. Flocks of stochastic parrots: Differentially private prompt learning for large language models, Duan et al., NeurIPS 2024
- 1. Dp-opt: Make large language model your privacy-preserving prompt engineer, Hong et al., ICLR 2024

Other privacy-preserving paradigms

1. Federated learning

OpenFedLLM: Training Large Language Models on Decentralized Private Data via Federated Learning, Ye et al., arXiv 2024.

1. Machine unlearning

Rethinking Machine Unlearning for Large Language Models, Liu et al., arXiv 2024

Other privacy-preserving paradigms

1. Federated learning

OpenFedLLM: Training Large Language Models on Decentralized Private Data via Federated Learning, Ye et al., arXiv 2024.

1. Machine unlearning

Rethinking Machine Unlearning for Large Language Models, Liu et al., arXiv 2024

A good survey:

Privacy Issues in Large Language Models: A Survey, Neel and Chang, arXiv'24.

Final discussions

Challenges for real-world deployment of DP

. . .

Harvard Data Science Review • Issue 6.1, Winter 2024

Advancing Differential Privacy: Where We Are Now and Future Directions for Real-World Deployment

Rachel Cummings¹ Damien Desfontaines² David Evans³ Roxana Geambasu¹ Yangsibo Huang⁴ Matthew Jagielski⁵ Peter Kairouz⁶ Gautam Kamath⁷ Sewoong Oh^{6,8} Olga Ohrimenko⁹ Nicolas Papernot¹⁰ Ryan Rogers¹¹ Milan Shen¹² Shuang Song¹⁰ Weijie Su¹³ Andreas Terzis¹⁰ Abhradeep Thakurta¹⁰ Sergei Vassilvitskii¹⁴ Yu-Xiang Wang¹⁵ Li Xiong¹⁶ Sergey Yekhanin¹⁷ Da Yu¹⁸ Huanyu Zhang¹⁹ Wanrong Zhang²⁰

- 1. Deciding on the specific DP definition to use
- 1. Trade-off between privacy and utility
- 1. Communicating to the user what DP provides and its effects
- 1. Controlling computational costs

A lot of discussions on future work!

What does it mean for an LLM to preserve privacy

It must only reveal private information (aka "secrets") in the right contexts and to the right people.

In reality, it is hard to determine:

- 1. what information is contained in the secret
- 2. which people know the secret
- 3. in what contexts a secret can be shared without violating privacy

Brown et al. "What Does it Mean for a Language Model to Preserve Privacy?" arXiv

(c) Alice's information is shared by Bob

What does it mean for an LLM to preserve privacy

It must only reveal private information (aka "secrets") in the right contexts and to the right people.

In reality, it is hard to determine:

- 1. what information is contained in the secret
- 2. which people know the secret
- 3. in what contexts a secret can be shared without violating privacy

The assumptions of data sanitization and DP often do not hold for text data. LMs should be trained on data that was explicitly intended for fully public use, both at present and into the future.

Brown et al. "What Does it Mean for a Language Model to Preserve Privacy?" arXiv

(c) Alice's information is shared by Bob

Summary

1. Privacy risks

- a. Membership inference attack (MIA)
- b. Training data extraction
- 2. Privacy-preserving methods
 - a. Data sanitization
 - b. Training-time privacy-preserving
 - c. Inference-time privacy-preserving
- 3. Final discussions